Problem 4-4
Show
$$
\def\ppdiff#1#2{\frac{\partial #1}{\partial #2}}
\def\pdiff#1{\frac{\partial}{\partial #1}}
\def\mb#1{\mathbf{#1}}
\def\reverse#1{\frac{1}{#1}}
\def\mfrac#1#2{\frac{\,#1\,}{\,#2\,}}
\def\Bpdiff#1{\frac{\partial^{2}}{\partial #1^{2}}}
\Bpdiff{x} x = x\Bpdiff{x}+2\pdiff{x}
\tag{4-22}
$$
and therefore that, for the $H$ of Eq. (4-15),
$$
Hx-xH=-\frac{\hbar^{2}}{m}\pdiff{x}
\tag{4-23}
$$
This operator notation is used a great deal in the conventional formulations of quantum mechanics.
(解答) 演算子はその右に作用を受ける関数 $f(x)$ が存在することで意味を持つことに留意すれば, 式(4-22)の左辺は次のような意味である:
\begin{align}
\left(\Bpdiff{x}x\right)f(x)&=\left(\pdiff{x}\pdiff{x}\right)xf(x)=\pdiff{x}\left(\pdiff{x}xf(x)\right)\notag\\
&=\pdiff{x}\left(\ppdiff{x}{x}f(x)+x\ppdiff{f(x)}{x}\right)=\pdiff{x}\left(f(x)+x\ppdiff{f(x)}{x}\right)\notag\\
&=\ppdiff{f(x)}{x}+\pdiff{x}\left(x\ppdiff{f(x)}{x}\right)\notag\\
&=\ppdiff{f(x)}{x}+\ppdiff{x}{x}\ppdiff{f(x)}{x}+x\Bpdiff{x}f(x)=2\pdiff{x}f(x)+x\Bpdiff{x}f(x)\notag\\
&=\left(2\pdiff{x}+\Bpdiff{x}\right) f(x)
\tag{1}
\end{align}
これが任意の関数 $f(x)$ について成り立つべきである.従って, 式(4-22)が言える:
\begin{equation}
\Bpdiff{x}x=2\pdiff{x}+x\Bpdiff{x}
\tag{2}
\end{equation}
また, 明らかに次が言える:
\begin{equation}
V(x)x-xV(x)=0
\tag{3}
\end{equation}
さらに, 式(4-15)から
\begin{equation}
H=-\frac{\hbar^{2}}{2m}\Bpdiff{x}+V(x)
\tag{4}
\end{equation}
以上の式(2)$\sim$式(4)を用いれば, 式(4-23)が言える:
\begin{align}
Hx-xH&=\left(-\mfrac{\hbar^{2}}{2m}\Bpdiff{x}+V(x)\right) x-x \left( -\mfrac{\hbar^{2}}{2m}\Bpdiff{x}+V(x)\right)\notag\\
&=-\mfrac{\hbar^{2}}{2m}\Bpdiff{x}x+V(x)x+x\mfrac{\hbar^{2}}{2m}\Bpdiff{x}-xV(x)\notag\\
&=-\mfrac{\hbar^{2}}{2m}\left(2\pdiff{x}+x\Bpdiff{x}\right)+x\mfrac{\hbar^{2}}{2m}\Bpdiff{x}+V(x)x-xV(x)\notag\\
&=-\mfrac{\hbar^{2}}{m}\pdiff{x}-\mfrac{\hbar^{2}}{2m}x\Bpdiff{x}+\mfrac{\hbar^{2}}{2m}x\Bpdiff{x}\notag\\
&=-\mfrac{\hbar^{2}}{m}\pdiff{x}
\tag{5}
\end{align}